精子是怎么携带遗传基因的。那么小怎么携带?每个精子携带的遗传基因一样吗

精子是怎么携带遗传基因的。那么小怎么携带?

1、精子是怎么携带遗传基因的。那么小怎么携带?

基因是具有遗传效应的DNA片段,而DNA的载体为染色体,存在于细胞核内,虽然说基因很小,但是基因更小。精子中所带者的染色体不一定相同,所以基因也不一定相同(具体的你可以看一看有关减数分裂方面的知识),至于为什么与卵子的结合后能生出和他父亲很像的性格以及相貌出来是因为受精卵中的染色体是由父母双方的染色体结合而成的,所以其中的基因也与父母的相同(当然其中不包括变异的基因),基因会在下一代中表达出来,于是生出的小孩会与父母很相似。

每个精子携带的遗传基因一样吗

2、每个精子携带的遗传基因一样吗

减数分裂次级精母细胞产生的两个精子携带的遗传基因是一样的 不同次级精母细胞产生的精子遗传基因不一样 不同的精子和同一个卵细胞结合,不会生出相同的人 同一个精子和不同的卵细胞结合也不会生出相同的人。

每个精子携带的遗传基因一样吗

3、每个精子携带的遗传基因一样吗

你本来的问题就有问题。每一个卵细胞只能和一个精子结合!(和两个精子结合的话就是一个三倍体动物细胞,这个细胞基本不能正常发育)一个精子也只能和一个卵细胞结合,结合后就不存在。同一个体而言,由于大部分生物都是杂合子,身上携带多对杂合基因。通过基因的自由组合或者连锁互换,产生的精子千差万别。所以同一个体产生的精子相似的几率非常少。更不用说不同个体的生物了。卵细胞的基因组成也与精子情况一样。PS:同卵双生的双胞胎,只因为同一个受精卵卵裂后分开成两个胚胎。由于是同一个受精卵而来,所以遗传物质非常相似。异卵双生的双胞胎,是来自不同的两个受精卵(两个精子分别和不同的卵细胞结合),所以他俩的遗传物质有一定的差异。龙凤胎一定是异卵双生。

每个精子携带的遗传基因一样吗

4、每个精子携带的遗传基因一样吗

你本来的问题就有问题。 每一个卵细胞只能和一个精子结合!(和两个精子结合的话就是一个三倍体动物细胞,这个细胞基本不能正常发育) 一个精子也只能和一个卵细胞结合,结合后就不存在。 同一个体而言,由于大部分生物都是杂合子,身上携带多对杂合基因。通过基因的自由组合或者连锁互换,产生的精子千差万别。所以同一个体产生的精子相似的几率非常少。更不用说不同个体的生物了。 卵细胞的基因组成也与精子情况一样。 PS:同卵双生的双胞胎,只因为同一个受精卵卵裂后分开成两个胚胎。由于是同一个受精卵而来,所以遗传物质非常相似。 异卵双生的双胞胎,是来自不同的两个受精卵(两个精子分别和不同的卵细胞结合),所以他俩的遗传物质有一定的差异。龙凤胎一定是异卵双生。

每个精子携带的遗传基因一样吗

5、每个精子携带的遗传基因一样吗

1910年,美国生物学家摩尔根创立了染色体——遗传基因理论,由此细胞遗传学有了坚实的基础。 1866年,就在孟德尔发表豌豆遗传论文那年,摩尔根出生了。他的父亲担任过美国驻外领事,家庭生活十分优裕。青少年时代,摩尔根喜欢游历自然风光,在游历中产生了对大自然的无限热爱,从而使他后来走上了探索生物奥秘之路。1886年20岁时,摩尔根考入霍普金斯大学研究院读研究生,主要研究生物形态学。他比较了四种水中无脊椎动物的形态变化,确实了它们的种属,写出了《论海蜂蛛》的论文,获得了博士学位。 1900年春天,荷兰的德弗里斯、德国的柯伦斯和奥地利的皇歇马克通过实验,各自得出了和当年孟德尔豌豆遗传机理一样的结论。他们为发表论文查阅过去的文献时,都发现了孟德尔那尘封土埋的论文。惊叹之余,他们在各自的论文中,都把发现生物遗传机理的荣誉让给孟德尔,并把各自的工作说成是对孟理论的证实。从而,蒙在孟德尔论文上的尘土被拂去了,珍珠重新放射出了光辉。这不仅使孟德尔的大名立即传遍的世界,而且使他奠基的遗传学象一株新笋一样拔地而起。 此前,细胞学取得的一系列成就,为这时遗传学的飞速发展奠定了基础。自从施莱登和许旺创立细胞学之后,人们接连发现了细胞里的原生质,发现了体积约为细胞十分之一的细胞核,发现一切细胞都是细胞分裂自生的。1879年,德国生物学家弗莱明又发现,用碱性莱胺染料可把透明的细胞核内的微粒状物质染色,观察细胞分裂全过程。他用这种方法看到了细胞分裂的“电影”:先把微粒状的染色质聚成丝状,再把这丝状物分成数目相同的两半,形成两个细胞核,生成两个细胞。因此,弗莱明把细胞分裂叫做有丝分裂。1888年,德国生物学家瓦尔德尔把弗莱明的染色质叫做“染色体”,一直使用至今。人们还发现,每种动植物的细胞里都有特定数目的染色体。在细胞分裂之前,染色体数目先增加一倍,因而分裂后的细胞能形成和母细胞数目一样多的染色体。每个精细胞和卵细胞的染色体数目,只有机体一般细胞的一半,精卵结合生成的细胞就有了一整套染色体。 上述细胞学成就,都是在孟德尔遗传学成果被重新发现之前取得的,所以孟德尔遗传研究成果重新发现之后,生物学家们便马上看出了孟德尔的遗传因子和在显微镜下看到的染色体之间联系。最早提出两者相似的是美国细胞学家萨顿,他在1904年提出,染色体和孟德尔说的遗传因子一样,成对地存在着,它们一个来自父本,一个来自母本。但萨顿不敢做出染色体就是遗传因子的结论,因为细胞里的染色体数目远远少于遗传特征的数目。 不管怎么说,萨顿和他同时的生物学家们,终于使细胞学和遗传学在各自经历了漫长而独特的发展道路之后“结婚”了。遗传学用丰富的实验数据阐明了生物遗传的规律,细胞学则生动地指出了这种规律的物质基础。就这样,细胞遗传学以崭新的姿态在生物科学界出现了。 在孟德尔遗传机理重被发现之时,已成为哥伦比亚大学生物学教授的摩尔根,立即投入了遗传学研究。摩尔根一心扑在生物研究上,因此他成了人们心目中的一位“怪人”。因为在他的实验室里,他不养牛羊鸡鸭吃肉,却养了成千上万只果蝇。果蝇对人说来虽坏,但作为遗传研究材料,却有许多独到的优点。首先,它们身体小,占用地方很小,所以研究起来很便当。其次,饲养果蝇很经济,成本很低。第三,果蝇的繁殖之快是牛羊难以比拟的。而且,它有很多容易观察的特征,每个细胞中只有四对染色体。所以,摩尔根选中了果蝇作为遗传实验材料。 1906年,摩尔根就在果蝇身上发现了性别遗传机理的一个重要事实。他发现,雌果蝇细胞里的四对棒形染色体是完全成对的,卵从这四对棒形染色体中各得一个棒形染色体,所以所有卵细胞中的染色体组成都是一样的。精子中的染色体组成就不同了:雄果蝇细胞里的四对染色体里,有三对是棒形染色体,有一对是由一个棒形染色体和一个钩形染色体组成的。所以精细胞一半由四个棒形染色体组成,一半由三个棒形染色体和一个钩形染色体组成。棒形染色体通常称为X染色体;钩形染色体通常称为Y染色体,也叫性染色体。如果由X染色体组成的精子使卵受精,卵就自然发育成雌果蝇;由三个X染色体和一个Y染色体的精子使卵受精,卵就自然发育成雄果蝇。这个发现告诉摩尔根,生物性别的遗传是由性染色体决定的,也就是说生物性别的遗传因子在性染色体上,性染色体是性别遗传因子的物质承担者。 这是生物学上一项重大的发现,但摩尔根并没有因此肯定染色体就是遗传因子,他在继续进行新的实验以证实这一关系。1910年,摩尔根对他饲养的一群野种红眼果蝇进行了放射性照射,结果在子一代中获得了一只白眼雄果蝇。用这一只白眼雄果蝇与一群正常红眼雌果蝇交配,所生第一代雌雄果蝇均为红眼;他让这些第一代杂种杂交,生出的第二代果蝇白眼性状只在雄性中出现了。摩尔根又使用白眼雌果蝇与红眼红果蝇杂交,所生第一代果蝇凡是雌性概为红眼,凡是雄性概为白眼。为了解释这种现象,摩尔根联想到了果蝇的性别遗传机理,从而看到了白眼性状的遗传因子是和决定性别的因素联系在一起的,果蝇的白眼性状只遗传给雄性,说明白眼性状是由性染色体传递遗传的,这叫做“伴性遗传”。 通过以上长期实验探索,摩尔根终于肯定地得出了染色体是遗传因子载体的结论。1909年,美国生物学家约翰逊把遗传因子改称遗传基因,这个名称一直沿用至今。这是一个伟大的结论,它指出了遗传的染色体学说不再是空洞抽象的概念,为遗传基因找到了物质基础;同时,它指出了某一遗传基因是在某一染色体上,为人们探索生物遗传机理开拓出了一条新路。 摩尔根沿着自己的道路继续前进,又仔细研究了果蝇幼虫唾腺细胞里的唾腺染色体。这是一种比一般细胞还大100倍的特殊染色体,所以很容易看清它的内部结构。摩尔根和他的学生一起,不仅弄清了唾腺染色体的结构,而且仔细探索了它的部分缺失、重复、倒位和移位等畸形变异及其意义。 在大量实验资料的基础上,在数学方法的帮助下,摩尔根和他的学生斯特蒂文特成功地推断出了一对对基因在染色体上的具体排列位置,绘出了果蝇遗传基因在染色体上的座落图,从而为染色体——遗传基因理论提出了科学的依据。 1828年,摩尔根在总结他20余年研究果蝇的成果基础上,写出了他的遗传学名著《基因论》。在书中,摩尔根主张遗传物质基因是一种颗粒体,象念珠一样按照一定的次序排列在染色体中;染色体是遗传基因的物质承担者,每一个基因都在染色体里占据一定的位置,都能在细胞分裂期间将自己按照翻板的方式从一变作二。与此同时,他还阐述了基因的连锁和互换规律,解开了生物变异之迷,弥补了达尔文进化论的不足,为人们杂交育种指明了方向,为预防遗传性疾病提供了理论。

每个精子携带的遗传基因一样吗不同的精子和同一个卵

6、每个精子携带的遗传基因一样吗不同的精子和同一个卵

不一样。 减数分裂过程中同源染色体和非姐妹染色单体间发生交换(基因重组),使配子的遗传多样化,增加了后代对环境的适应性,因此减数分裂不仅是保证生物种类染色体数目稳定的机制,同时也是物种适应环境变化不断进化的机制。减数分裂不仅是保持物种遗传物质稳定传递的手段;在减数分裂过程中,通过同源染色体非姐妹染色单体的交叉互换(联会),非同源染色体的自由组合以及四分体中非姐妹染色体的部分片段的交叉互换,增加了基因变异种类,增强了群体的遗传多样性,为自然选择提供更多原材料……。